竞博JBO官网
师资力量

赵南蓉     教 授(博导)

研究方向:物理化学

联系方式:18628002677          Email:zhaonanr@scu.edu.cn

个人主页:点击进入

个人简历

2004.9-2006.9:日本名古屋工业大学,JSPS Fellowship

2002.3-2003.10:德国柏林工业大学,博士后

1998.9-2001.6:竞博JBO官网,竞博JBO官网,物理化学专业,博士

1995.9-1998.6:西南大学,物理科学与技术学院,凝聚态物理专业,硕士

1991.9-1995.6:西南大学,物理科学与技术学院,本科

工作经历

2008.3-至今:竞博JBO官网,竞博JBO官网,教授,博士生导师

2001.9-2002.2:竞博JBO官网,物理学院,副教授

主要研究方向

发展介观统计方法,结合粗粒化模型及计算机模拟,探索复杂体系非平衡统计力学行为的新现象和新规律,主要研究方向包括:

1. 活性软物质体系的自组织行为

2.复杂溶液中大分子扩散、环化及过孔动力学

3.拥挤效应对大分子构象变化的调控

主持科研项目

1.国家自然科学基金(面上):活性生物体系非均一动力学行为的介观统计理论研究2022.01-2025.12

2.国家自然科学基金(面上):活性生物体系扩散-反应动力学的介观统计理论研究,2019.01-2022.12

3.国家自然科学基金(面上):亚浓聚合物溶液中蛋白扩散及反应动力学的介观统计理论研究,2017.01-2020.12

4.国家自然科学基金(面上):拉伸力作用下大分子构象变化动力学的介观统计理论研究,2014.01-2017.12

5.国家自然科学基金(面上):蛋白质环境效应的介观非马尔可夫统计模型研究,2012.01-2015.12

6.国家自然科学基金(面上):酶构型涨落及单分子酶反应动力学的介观统计理论,2010.01-2012.12

7.四川省应用基础研究(重点):细胞中蛋白结构、功能与稳定性研究,2018.01-2020.12

8.四川省应用基础计划:生物单分子检测技术的研究及应用,2014.07-2016.06

9.四川省国际合作计划:非平衡热力学在几类典型生物体系中的应用,2011.01-2013.12

主要奖励和荣誉

1.教育部新世纪优秀人才支持计划(2011

2.四川省学术和技术带头人后备人选(2013

3.竞博JBO官网十佳师德奖(2017

4.竞博JBO官网第四届星火校友奖教金(2018 

代表性学术论文

1.F. Tan, J. L. Wang, R. Yan and N. R. Zhao*, Forced and spontaneous translocation dynamics of a semiflexible active polymer

 in two dimensions, Soft Matter 20, 1120 (2024).

2.F. Tan, R. Yan, C. N. Zhao and N. R. Zhao*, Translocation dynamics of an active filament through a long-length scale channel, J. Phys. Chem. B 127, 8603 (2023).

3.R. Yan, F. Tan, J. L. Wang and N. R. Zhao*Conformation and dynamics of an active filament in crowded media, J. Chem. Phys. 158, 114905 (2023).

4.T. Lei, C. N. Zhao, R. Yan and N. R. Zhao*, Collective behavior of chiral active particles with anisotropic interactions in a confined space, Soft Matter 19, 1312 (2023).

5.T. Lei, R. Yan and N. R. Zhao*Biased-angle effect on diffusion dynamics and phase separation in anisotropic active particle system, J. Chem. Phys. 156, 204901 (2022).

6.Y. Chen, R. Yan and N. R. Zhao*, Passive and active tracer dynamics in polymer solutions with isotropic-to-nematic phase transition, Phys. Chem. Chem. Phys. 24, 7415 (2022).

7.B. J. Zhang, T. Lei and N. R. Zhao*, Comparative study of polymer looping kinetics in passive and active environments, Phys. Chem. Chem. Phys. 23, 12171 (2021).

8.F. Tan, Y. Chen and N. R. Zhao*, Effects of active crowder size and activity–crowding coupling on polymer translocation, Soft Matter 17, 1940 (2021).

9.B. J. Zhang, F. Tan and N. R. Zhao*, Polymer looping kinetics in active heterogeneous environments, Soft Matter 17, 10334 (2021).

10.F. E. Feng, T. Lei and N. R. Zhao*, Tunable depletion force in active and crowded environments, Phys. Rev. E 103, 022604 (2021).

11.B. J. Zhang, R. Yan and N. R. Zhao*, Dynamics and glass transition temperature of polystyrene films supported on hydroxyl terminated substrates, AIP Advances 10, 045322 (2020).

12.X. L. Cao, B. J. Zhang and N. R. Zhao*, Effective temperature scaled dynamics of a flexible polymer in an active bath, Mol. Phys. 118, e1730992 (2020).

13.X. L. Cao, B. J. Zhang and N. R. Zhao*, Contrastive factors of activity and crowding on conformational properties of a flexible polymer, Chem. Phys. Lett. 745, 137213 (2020).

14.C. L. Yuan, A. P. Chen, B. J. Zhang and N. R. Zhao*, Activity-crowding coupling effect on diffusion dynamics of a self-propelled particle in polymer solutions, Phys. Chem. Chem. Phys. 21, 24112 (2019).

15.X. L. Cao, B. J. Zhang and N. R. Zhao*, Crowding-activity coupling effect on conformational change of a semi-flexible polymer, Polymers 11, 1021 (2019).

16.Y. K. Bian, R. Yan, P. Li and N. R. Zhao*, Unusual crowding-induced chain looping kinetics in hard-sphere fluids: a contrastive study with polymer solutions, Soft Matter 15, 4976 (2019).

17.A. P. Chen and N. R. Zhao*, Comparative study of the crowding-induced collapse effect in hard-sphere, flexible polymer and rod-like polymer systems, Phys. Chem. Chem. Phys. 21, 12335 (2019).

18.Y. K. Bian, X. L. Cao, P. Li and N. R. Zhao*, Understanding chain looping kinetics in polymer solutions: crowding effects of micro-viscosity and collapse, Soft Matter 14, 8060 (2018).

19.B. J. Zhang, X. L. Cao, G. Zhou* and N. R. Zhao*, Anomalous diffusion of polystyrene from an attractive substrate based on all-atom simulation, Phys. Chem. Chem. Phys. 20, 25304 (2018).

20.J. Qing, A. P. Chen and N. R. Zhao*, Quantifying the protein–protein association rate in polymer solutions: crowding-induced diffusion and energy modifications, Phys. Chem. Chem. Phys. 20, 27937 (2018).

21.Y. K. Bian, P. Li and N. R. Zhao*, Effects of internal friction on contact formation dynamics of polymer chain, Mol. Phys. 116, 1026 (2018).

22.Y. K. Bian, P. Li and N. R. Zhao*, Effects of solvent quality on contact formation dynamics of polymer chain, Chem. Phys. Lett. 703, 63 (2018).

23.A. P. Chen, N. R. Zhao* and Z. H. Hou*, The effect of hydrodynamic interactions on nanoparticle diffusion in polymer solutions: a multiparticle collision dynamics study, Soft Matter, 13, 8625 (2017).

24.J. Wang, Y. K. Bian, X. L. Cao and N. R. Zhao*, Understanding diffusion of intrinsically disordered proteins in polymer solutions: A disorder plus collapse model, AIP Advances 7, 115120 (2017).

25.J.  Qing, A. P. Chen and N. R. Zhao*, A new scaling for the rotational diffusion of molecular probes in polymer solutions, Phys. Chem. Chem. Phys. 19, 32687 (2017).

26.H. Ding, H. J. Jiang, N. R. Zhao* and Z. H. Hou*, Diffusion of a Rouse chain in porous media: A mode-coupling-theory study, Phys. Rev. E 95, 012121 (2017).

27.X. Q. Feng, A. P. Chen, J. Wang, N. R. Zhao* and Z. H. Hou*, Understanding protein diffusion in polymer solutions: a hydration with depletion model, J. Phys. Chem. B 120, 10114 (2016).

28.Y. H. Dong, X. Q. Feng, N. R. Zhao* and Z. H. Hou*, Diffusion of nanoparticles in semi-dilute polymer solutions: A mode-coupling theory study, J. Chem. Phys. 143, 024903 (2015).

29.Y. K. Bian, Z. L. Wang, A. P. Chen and N. R. Zhao*, Fluctuating bottleneck model studies on kinetics of DNA escape from α-hemolysin nanopores, J. Chem. Phys. 143, 184908 (2015).

30.P. Li, Y. H. Dong, N. R. Zhao* and Z. H. Hou*, Distance fluctuation of a single molecule in Lennard-Jones liquid based on generalized Langevin equation and mode coupling theory, J. Chem. Phys. 140, 154109 (2014).

31.Y. Zheng, Y. K. Bian, N. R. Zhao* and Z. H. Hou*, Stretching of single poly-ubiquitin molecules revisited: dynamic disorder in the nonexponential unfolding kinetics, J. Chem. Phys. 140, 125102 (2014).

32.Y. Zheng; P. Li, N. R. Zhao* and Z. H. Hou*, Kinetics of molecular transitions with dynamic disorder in single-molecule pulling experiments, J. Chem. Phys. 138, 204102 (2013).

33.Y. X. Wang, N. R. Zhao* and Y. J. Yan, Langevin dynamics of correlated sub-diffusion and normal diffusion, Phys. Rev. E 85, 041142 (2012).

34.N. R. Zhao, A. Mentrelli, T. Ruggeri and M. Sugiyama, Admissible shock waves and shock-induced phase transitions in a van der Waals fluid, Phys. Fluids 23, 086101 (2011).

35.S. Taniguchi, A. Mentrelli, T. Ruggeri and M. Sugiyama and N. R. Zhao, Prediction and simulation of compressive shocks with lower perturbed density for increasing shock strength in real gases, Phys. Rev. E 82, 036324 (2010).

36.N. R. Zhao, M. Sugiyama and T. Ruggeri, Phase transition induced by a shock wave in hard-sphere and hard-disk systems, J. Chem. Phys. 129, 054506 (2008).

37.N. R. Zhao and M. Sugiyama, Analysis of heat conduction in a rarefied gas at rest with a temperature jump at the boundary by consistent-order extended thermodynamics, Continuum Mech. Therm. 18, 367 (2007).

38.N. R. Zhao and J. L. Luo, Polarization induced by external noise in irreversible electrode processes: A stochastic measure of thermodynamic effects driven by external noise in electro-chemical reaction systems, J. Chem. Phys. 116, 5807 (2002).

39.J. L. Luo, N. R. Zhao and B. Hu, Effects of critical fluctuations to stochastic thermodynamic behavior of chemical reaction 

systems at steady state far from equilibrium, Phys. Chem. Chem. Phys. 4, 4149 (2002).

40.N. R. Zhao and J. L. Luo, Entropy and entropy production of finite chemical reaction systems influenced by Gaussian noise, J. Chem. Phys. 114, 7761 (2001).

关闭